fbpx
calculus online - Free exercises and solutions to help you succeed!

Vector uses in physics – Calculate velocity and acceleration – Exercise 3852

Exercise

A particle moves according to the law of motion

\vec{r}(t)=R\cos(\omega t)\vec{i}+R\sin(\omega t)\vec{j}

Where

\omega>0, R>0

Calculate the velocity function, the acceleration function, their values (vector sizes) and unit vectors.

Final Answer

\vec{v}(t)=-R\omega\sin(\omega t)\vec{i}+R\omega\cos(\omega t)\vec{j}

|\vec{v}(t)|=R\omega

\hat{v}(t)=-\sin(\omega t)\vec{i}+\cos(\omega t)\vec{j}

\vec{a}(t)=-R\omega^2\cos(\omega t)\vec{i}-R\omega^2\sin(\omega t)\vec{j}

|\vec{a}(t)|=R\omega^2

\hat{a}(t)=-\cos(\omega t)\vec{i}-\sin(\omega t)\vec{j}

Solution

Coming soon…

Share with Friends

Leave a Reply